စက်သင်ယူမှုတွင် ကြီးမားသောဒေတာအတွဲများနှင့် လုပ်ဆောင်ရာတွင် ကန့်သတ်ချက်များကား အဘယ်နည်း။
စက်သင်ယူမှုတွင် ကြီးမားသောဒေတာအတွဲများကို ကိုင်တွယ်ဖြေရှင်းရာတွင် မော်ဒယ်များ၏ ထိရောက်မှုနှင့် ထိရောက်မှုတို့ကို သေချာစေရန် ထည့်သွင်းစဉ်းစားရန် လိုအပ်သည့် ကန့်သတ်ချက်များစွာရှိသည်။ ဤကန့်သတ်ချက်များသည် တွက်ချက်မှုဆိုင်ရာအရင်းအမြစ်များ၊ မှတ်ဉာဏ်ကန့်သတ်ချက်များ၊ ဒေတာအရည်အသွေးနှင့် မော်ဒယ်ရှုပ်ထွေးမှုများကဲ့သို့သော ရှုထောင့်အမျိုးမျိုးမှ ဖြစ်ပေါ်လာနိုင်သည်။ ကြီးမားသောဒေတာအတွဲများကို ထည့်သွင်းခြင်း၏ အဓိကကန့်သတ်ချက်တစ်ခု
- Published in ပြည်တွင်းသတင်း ဉာဏ်ရည်တု, EITC/AI/GCML Google Cloud Machine Learning, စက်သင်ယူမှုအတွက်တိုးတက်, GCP BigQuery နှင့်ပွင့်လင်းဒေတာအစု
ပုံမှန် အာရုံကြောကွန်ရက်တစ်ခုသည် ဘီလီယံ 30 နီးပါးရှိသော variables လုပ်ဆောင်ချက်တစ်ခုနှင့် နှိုင်းယှဉ်နိုင်ပါသလား။
ပုံမှန် အာရုံကြောကွန်ရက်တစ်ခုသည် ကိန်းရှင် 30 ဘီလီယံနီးပါးရှိသော လုပ်ဆောင်မှုတစ်ခုနှင့် အမှန်တကယ် နှိုင်းယှဉ်နိုင်သည်။ ဤနှိုင်းယှဉ်ချက်ကို နားလည်ရန်၊ ကျွန်ုပ်တို့သည် အာရုံကြောကွန်ရက်များ၏ အခြေခံသဘောတရားများနှင့် မော်ဒယ်တစ်ခုတွင် ကန့်သတ်ဘောင်များစွာရှိခြင်း၏ သက်ရောက်မှုများကို ထည့်သွင်းစဉ်းစားရန် လိုအပ်ပါသည်။ Neural Networks များသည် စက်ဖြင့် မှုတ်သွင်းထားသော စက်သင်ယူမှု မော်ဒယ်များ ၏ အတန်းအစား တစ်ခု ဖြစ်သည်။
- Published in ပြည်တွင်းသတင်း ဉာဏ်ရည်တု, EITC/AI/DLPP နက်နက်နဲနဲလေ့လာခြင်းကို Python နှင့် PyTorch, နိဒါန္း, နက်ရှိုင်းစွာလေ့လာခြင်းအတွက်နိဒါန်းနှင့် Pytorch
စက်သင်ယူမှုတွင် အံဝင်ခွင်ကျဖြစ်မှုသည် အဘယ်အရာနှင့် ၎င်းသည် အဘယ်ကြောင့် ဖြစ်ပေါ်သနည်း။
မော်ဒယ်တစ်ခုသည် လေ့ကျင့်ရေးဒေတာအပေါ် အလွန်ကောင်းမွန်စွာ လုပ်ဆောင်သော်လည်း မမြင်ရသော ဒေတာအသစ်များကို ယေဘုယျမဖော်ပြနိုင်သည့် စက်ပစ္စည်းသင်ယူမှုတွင် လွန်ကဲခြင်းသည် ဖြစ်ရိုးဖြစ်စဉ်ပြဿနာတစ်ခုဖြစ်သည်။ မော်ဒယ်သည် ရှုပ်ထွေးလွန်းပြီး လေ့ကျင့်ရေးဒေတာရှိ ဆူညံသံများနှင့် အစွန်းအထင်းများကို အရင်းခံပုံစံများနှင့် ဆက်ဆံရေးများကို သင်ယူမည့်အစား စတင်အလွတ်ကျက်သောအခါ ဖြစ်ပေါ်သည်။ ၌
- Published in ပြည်တွင်းသတင်း ဉာဏ်ရည်တု, EITC/AI/TFF TensorFlow အခြေခံများ, Overfitting နှင့် underfitting ပြproblemsနာများ, မော်ဒယ်၏ အံဝင်ခွင်ကျဖြစ်မှုနှင့် အံဝင်ခွင်ကျဖြစ်မှု ပြဿနာများကို ဖြေရှင်းခြင်း - အပိုင်း ၁, စာမေးပွဲသုံးသပ်ချက်